skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Garcia-Camargo, Isabella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper introduces and presents a first analysis of a uniquely curated dataset of misinformation, disinformation, and rumors spreading on Twitter about the 2020 U.S. election. Previous research on misinformation—an umbrella term for false and misleading content—has largely focused either on broad categories, using a finite set of keywords to cover a complex topic, or on a few, focused case studies, with increased precision but limited scope. Our approach, by comparison, leverages real-time reports collected from September through November 2020 to develop a comprehensive dataset of tweets connected to 456 distinct misinformation stories from the 2020 U.S. election (our ElectionMisinfo2020 dataset), 307 of which sowed doubt in the legitimacy of the election. By relying on real-time incidents and streaming data, we generate a curated dataset that not only provides more granularity than a large collection based on a finite number of search terms, but also an improved opportunity for generalization compared to a small set of case studies. Though the emphasis is on misleading content, not all of the tweets linked to a misinformation story are false: some are questions, opinions, corrections, or factual content that nonetheless contributes to misperceptions. Along with a detailed description of the data, this paper provides an analysis of a critical subset of election-delegitimizing misinformation in terms of size, content, temporal diffusion, and partisanship. We label key ideological clusters of accounts within interaction networks, describe common misinformation narratives, and identify those accounts which repeatedly spread misinformation. We document the asymmetry of misinformation spread: accounts associated with support for President Biden shared stories in ElectionMisinfo2020 far less than accounts supporting his opponent. That asymmetry remained among the accounts who were repeatedly influential in the spread of misleading content that sowed doubt in the election: all but two of the top 100 ‘repeat spreader’ accounts were supporters of then-President Trump. These findings support the implementation and enforcement of ‘strike rules’ on social media platforms, directly addressing the outsized role of repeat spreaders. 
    more » « less